Attributes as Semantic Units between Natural Language and Visual Recognition
نویسنده
چکیده
Impressive progress has been made in the fields of computer vision and natural language processing. However, it remains a challenge to find the best point of interaction for these very different modalities. In this chapter we discuss how attributes allow us to exchange information between the two modalities and in this way lead to an interaction on a semantic level. Specifically we discuss how attributes allow using knowledge mined from language resources for recognizing novel visual categories, how we can generate sentence description about images and video, how we can ground natural language in visual content, and finally, how we can answer natural language questions about images.
منابع مشابه
The Effect of Using Visual Aids, Semantic Elaboration, and Visual Aids plus Semantic Elaboration on Iranian Learners' Vocabulary Learning
This study investigated the effect of using visual aids, semantic elaboration, and visual aids plus semantic elaboration on the Iranian EFL learners' vocabulary learning. To conduct the study, the researchers assigned 49 elementary learners to three homogeneous groups according to their proficiency level. Then, a pre-test of Paribakht and Wesche's Vocabulary Knowledge Scale was given to each gr...
متن کاملLearning Models for Object Recognition from Natural Language Descriptions
We investigate the task of learning models for visual object recognition from natural language descriptions alone. The approach contributes to the recognition of fine-grain object categories, such as animal and plant species, where it may be difficult to collect many images for training, but where textual descriptions of visual attributes are readily available. As an example we tackle recogniti...
متن کاملUnderstanding Convolutional Neural Networks in Terms of Category-Level Attributes
It has been recently reported that convolutional neural networks (CNNs) show good performances in many image recognition tasks. They significantly outperform the previous approaches that are not based on neural networks particularly for object category recognition. These performances are arguably owing to their ability of discovering better image features for recognition tasks through learning,...
متن کاملDiscriminative Object Categorization with External Semantic Knowledge
Visual object category recognition is one of the most challenging problems in computer vision. While effortless for humans, it is inherently difficult for machines because of the visual variations such as lighting, pose, clutter and occlusion. Even assuming that we can obtain perfect instance-level visual representations, the object category recognition problem still remains difficult for machi...
متن کاملA Contrastive Study of Request Speech Act in English and Persian Novels: Natural Semantic Metalanguage Approach
The Natural Semantic Metalanguage (NSM) Approach claims that there are some universalities in all languages. Speech acts seem to be present in all languages, but considering this approach, research has not indicated whether request speech act differs from one language to another. Thus, this study intended to investigate whether request strategies are used differently in English and Persian roma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1604.03249 شماره
صفحات -
تاریخ انتشار 2016